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Abstract. Supersymmetric quantum mechanics is considered in one-, two- and three-
dimensional spaces characterized by a non-vanishing constant curvature. In particular, a basic
superalgebra is pointed out. Interactions such as those of oscillator-like or Calogero type are
analysed in this context with respect to their spectra and associated accidental degeneracies.

1. Introduction

Originally coming from particle physics developments, supersymmetric quantum mechanics
(SSQM) has received much attention in the recent literature [1] since Witten’s contribution

[2]. As is well known, it is characterized by the existence Mfself-adjoint operators

Q. (@ = 1,2,..., N)—the supercharges—each of them being the square root of the

Hamiltonian H. More precisely, the Lie superalgebra subtending SSQM is that associated
with the following anticommutation and commutation relations:

{Qav Qb} = 28abH (1)
[H,Q.,=0 a=12,...,N. (2)
Let us already notice that we will limit ourselves to the caée= 2 corresponding, in
particular, to the interactions we will be interested in.
Some known systems are self-supersymmetric while the others need a supersymmetriza-

tion procedure. Among the first ones, we find the free context. IndeedDtHunjensional)
free Schoédinger Hamiltonian is

H = 3p? 3
and is generated by the two supercharges

1 1
= 7( . (l)) e 7( . (2)) 4
01 5P 02 P (4)
where the matrice!” and® (j =1,2,..., D) satisfy
o, 0"t = {02, 9>} = 28 (5)
o, 07} = 28, (6)

E being an antisymmetric tensor. In fact, it has been shown previously [3] that the quantities
o” andg® are the generators of the superalgelre2®~2/2/2=b/2) if D is odd and
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su(2P/2-1/2(0/2-1 if D is even. Among the second category, i.e. the systems needing

a supersymmatrization, we can recognize f.i. the harmonic oscillator-like interaction [4].

More generally, that is to say for an arbitrary interaction, the supercharges can be written
as

1 1
Q1=7(p~¢(1)+W-¢(2)) Qz=72(p-90(2>—W'<p(1)) @)

V2 V2
whereW (x) is called the superpotential. Through (1), they lead to the Hamiltonian
H = %Pz + %Wz + Wip; Ejx — 310, Wi (Eji + %[‘/’}l), 90;2)]). 8

All these considerations are relevant ofi@ space. Now, it is well known that a way
to put in evidencenonlinear algebras [5] is to leave such a flat space and go ¢oraed
one (characterized by > 0 if it is a sphere, by, < 0 if it is a hyperboldd). If it is true at
the level of algebras, we can reasonably hope that it is also true at the level of superalgebras
such as that recalled in (1) and (2). It is the purpose of this paper to analyse this situation.
More precisely, we will show that the free case as well as the corresponding interacting
contexts are supersymmetric in a curved space and imply a generalized SSQM-superalgebra.
The contents are then as follows. In section 2, we introduce the generalized SSQM-
superalgebra on the free case example and extend it to the context of an arbitrary interaction.
The spectra and eigenfunctions of the new associated Hamiltonians are found in section 3 for
the oscillator-like interaction in one, two and three space dimensions and for the Calogero
interaction in three space dimensions. The degeneracies present in these spectra are studied
and explained in section 4. We also include an appendix recalling the main steps of the
supersymmetric factorization method.

2. The generalized SSQM-superalgebra

The free Hamiltonian on @-dimensional curved space is [6]

H = }(w*+ AL (9)
wherer refers to a new Hermitian momentum defined by
T=p+ %Aw(a: -p) + %)»(p -x)T (20)

and L is the usual angular momentum
Ljx = Xjpx — Xk pj j,k=212,...,D.

Moreover, in order to fix our ideas, we consider the strictly positive curvatufiee. we
are working on the D-sphere).

The Hamiltonian (9) can be considered as a generalization of the Hamiltonian (3) (which
is recovered whei. — 0). By analogy with the operators (4), we propose to define the
generalized supercharges by

Q1= }2(” o) 0= \1@(" @), (11)
Noticing that

[7;, m] = IALji 12)
it is easy to see that

0% = 1n? + LiaLule™. o] (13)

03 = 3%+ girLile)”. ] (14)

{01, 02} = JirLule”. 02]. (15)
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Concentrating on the dimension3 = 1,2 and 3, we can, more precisely, realize the
@ )

quantitiesp;,” andg;” in terms of the Pauli matrices as follows [4]:
goil) =07 (piz) =07 if D=1 (16)
o1 =01 ¢y =02 o) = 02 o) = —o it D=2 17)
gp;_l) =01Q01 gpél) =02® 01 gogl) =03Q 01 .
@ _ @ _ @ if D=3 (18)
@, =01 02 @, =02 072 @3 =03 02
in agreement with (5) and (6). We can then rewrite relations (13)—(15) as
{01, 01} = {Q2, 02} = 2H — 3.J? + §AD(D — 1) (19)
{01,002} =0 (20)
where (forD = 2, 3)
Such results imply that
[H, 0] =[H, Q2] =0 (22)
[H,J]=0 (23)
[J, 0] =[J, Q2] =0 (24)
and evidently
[Jjs ] = igjudi. (25)

The set (19), (20), (22)—(25) imply that we have twdd operators Q; and Q) and
%(D2 — D+ 2) evenones {H andJ). These are characteristics of a generalized SSQM-
superalgebra. They reduce to equations (1) and (2)4 0 (J disappears as it should
in the limit of a vanishingi). Let us also notice that, in the cage = 1, the usual
SSQM-superalgebra is recovered whethas present or not.

If we now turn to the interacting context associated with

1 1
O1= 50 PP +W-?) 0= B P? - WD) (26)

by analogy with (7), we are led through the relation (19) to
H = %ﬂ'z + %Wz + %)»ij[fpfl), %il)] + %{ﬂj, Wil8jk — %[ﬂj, Wk][ﬁ”/EZ)a wfl)]

+I0J% - EaD(D - 1) (27)
and the remaining relations of the generalized SSQM-superalgebra are still available.

3. Spectrum and eigenfunctions of the generalized Hamiltonian
Let us concentrate on systems submitted to central forces, i.e. described by superpotentials
of the form
W(x) =V(i)z r=|z|. (28)
The generalized Hamiltonian (27) can then be written as
1 ) [ 1

H®D — épz —iADx -p— EAZ(D + 2)r2:c P+ Ax- p)2 + ékzrz(:c . p)2

2 .

i

A 1 A
~G D+ DD +3)2 4 Vi 4 §ij[rpfl), o] + Vxip;i Bk
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i 1
+Z (8jkV + AxjxV + ;xjka/ + )»rxjka/> [(p,(f), <p;l)]

A, AD
+§J — T6(3+5D) (29)
whereV’ stands for the derivative df (r) with respect to-. Using the spherical coordinates
for which

2 D-19 1

A=+ = ZA 30
ar2 r 8r~|—r2 o (30)
and
)
T-p=—Ir— (31)
or
we respectively obtain fob =1, D =2 andD =3
1 d? d 1 A
HY = 2+ 0= — 2@+ ad)— —A%r2 4 ZvH2 - 2
QLA g = 2 Ars) = AT SV =5
1
+503(1+ A2 (V +rV) (32a)
1 % 1 B 1
H?P = 21+ xd)% — — A+ m?)A+50)— — A+ DA
Z(Jrr)ar2 PGl r)ar ALY
15, (4 1 1 1
5 <5 + Ar2>+2V2r2 +VLz+V <1+ Zkr2> o3+ Sr(l+ Ar2)Vios
(320)
and

1 92 1 9 1
H® = (140220 — “(A4 DA+ 30D — = (14 4P Ag — 31+ Ard)
2 arz r or 2r2

1 1 1
Jrévzr2 +VL-0®o03+ éV(3+ A Qo3+ ér(1+ AV @ os.

(32¢)
In order to put in evidence the corresponding eigenvaltiend eigenfunctiong satisfying
HPy = Ey (33)
we successively realize the factorizations
Y =R@Y(@,...) (34)
and
F—/2(D-D
R(r) :A(V)W (35)
with [7]
AOYY(O,..)=—-l0l+D—-2Y(,...). (36)
Finally, we consider the following change of variables
1
r=——tan(v/a 37
7 n(vy) (37)
and the associated factorization
1
A=—" x(. (38)

cosv/Ay)
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We then obtain equation (33) on the more usual forms

1d2 1 o3 1
—V?tarf (V 2 ) ] =0
[ 207 T2V 0 (fy)+2C0§(ﬁy) +2fsm(fy) P

(39)
[—;;; + m + %v <‘; +U3) tarf(vAy) — % + %2 + Voz+Vm
+ %v’03(1+ tanz(\/Xy));X tan(v/Ay) — E} x =0 (3%M)
and
[_;;; + m + v (‘; +z®03) (Vi) — 5+ S+ D+ Vi@ s

+ VkI ® o3+ %V/l ® o3(1+ tar‘?(ﬁy))\/lx tan(v/Ay) — E} x=0 (3%)
for D=1, D =2 and D = 3, respectively. Note that is the eigenvalue of.; andk is
the eigenvalue oL - o(k =1 if j=1+3 k=—1—1if j=1-1).
Let us now turn to some specn‘lc interactions and let us apply in each case the
factorization based on SSQM characteristics as recalled in the appendix in order to put
in evidence the eigenvalues and eigenfunctiong/&t.

3.1. TheD = 1 oscillator-like interaction

In this case, the functiorV (r) introduced in (28) is simply the angular frequeney
Equation (32) is then
1 d? 2
f—+—tan2f +— E] =0.
[ 2dy? /) 20§(fy) x
It is thus a usual supersymmetric equation, i.e. of Witten type [2] (cf equation (8))
characterized by the superpotential

(40)

w
w = —1t Ay). 41
) 7 an(v/y) (41)

Evidently, in the limitA — 0, we recoverW(y) = wy as expected. Applying the method
developed in the appendix, we successfully obtain for the (-1)-eigenvalag of

W (y) = <n«/i + j%) tan(v/2y) (42)
E-=n <1+ ;) o (43)

and
~ (oY) o Fy (C; + g > L sit(/a y)) (44)

in terms of the hypergeometric functioi; (a, b; c; z) satisfying [8]

2
z(1— Z)d— +(c—(a+b+ 1)Z)E —ab |2Fi(a,b;c;z) =0. (45)
dz2 dz
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The supersymmetric properties and, in particular, the double degeneracy [2] of the non-
vanishing energies imply that, for the-{)-eigenvalue ob3, we have

=(n+1)<1+;(n+1)>w (46)
and

X~ (©OSVay) @ sin(/iy)o Fy (‘f ALy sinzmy)) . @

Let us notice that in the hyperbdtbcontext £ < 0) where, essentially, trigonometric
functions have to be replaced by hyperbolic ones, the superpotential corresponding to (41)
is the Bschl-Teller one [9].

3.2. TheD = 2 oscillator-like interaction

ReplacingV by w in (39%), we obtain

1 A(?-3) oo A AP
[—Z(jyz+2[gz(m+2<k+03>tar?(ﬁy)—4+2—|—ax73+a)m—E:|x_0.
(48)

Applying once again the suypersymmetric factorization as mentioned in the appendix, we
find

W, (y) = (ﬁ (n + %(a + 1)) + w) tan(vAy) — /A <n +1+4 1) cot(v/Ay) (49)

VA
A 1 3 ¢
En= 2n+l+é(8+l) 2n+l+é+é +o@n+l+m+e+1) (50)
Xn ~ (cos(\/Xy))(“’/”*((”l)/z)(sin(«/Xy))H(l/z)
szl(C:+n+l+1+;,—n;l+1; Sinz(ﬁy)> (51)

in terms ofe = +1, the eigenvalues af;.

3.3. TheD = 3 oscillator-like interaction
What we have to do, also in this case, is to replécby w in (39%) so we have

[_1 £ Ad+D

w
i I tarf - 711 1
202t sy T2 (2 +1®0s) tar(vay) - + (+1)

3
+2wl®03+a)kl®03—Ei|X=O. (52)
The associated superpotentials, energies and eigenfunctions are respectively
N w
Wa) = | 5 (e +1+20+ 7 tan(v/Ay) — v (n +1 + 1) cot(v/Ay) (53)

A
E, = 2<2n+l+ (8+1)>(2n+l+2+Z>+w<2n+l+8k+2(8+l)> (54)
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and
X ~ (€O 2y)) @M H(EFD/D (sin(y/)y)) !+

3
X2F1((;L)+}’l+l+2+2 —n;l+ ~ Slnz(fy))

3.4. TheD = 3 Calogero interaction

This interaction corresponds to the superpotential (28) where [10]

Vo) = o+ - ie s, syt
r)=w r2 2 zZV =z 2
With the change of variables (37), it is rewritten as

Av

0+
tart(v/1y)
implying that equation (39 reduces to

V(y) =

[ 1d2+ 1 <l(l+l)+l)» +1)»l® + Akl ® )
—= 5 1% % (o v O
2dy? " tark(v/ay) 2 ’ ’

0’ A A

3 1
—l—(wk~|—2a)—2vk>l®03—Ei|xz0.

The supersymmetric factorization leads to

W, (y) = (‘/j(s +142n) + %) tan(v/Ay) — vVA(n + [ + 1+ ve) cot(+/Ay)

A 5 ¢
E,=-|2n+1 1 2n+14+ -+ =
2( +14+ = (8+ ))( + +2+2>

1
w<2n+l+8k+2(8+1))+a)v(8+1)+)»v (28n+2(8+1)>

Xn ~ (COQ«/X)J)) (w/M)+((e+1)/2) (Sin(ﬁy))Hl-&-sv

3 3 .
szl(C;+n+l+2+;+sv, —n;l+2~|—sv;SIn2(x/Xy)>

for k =1, and

W, (y) = (f(e + 1+ 2n) + ‘”) tan(v/Ay) — VA(n + 1 + 1+ ve) cot(v/Ay)

N/

2

A 5 3
E, = 2<2n+l+ (s+1)> <2n+l++;)+a)<2n+l+£k+2(£+1)>

3k 1
1—-¢)—av|2 — + =
+wv( £) v< en + > + 2)

K ~ (Coqﬁy))(w/)n)-‘r((?%-l)/a(Sln(\/xy))ﬁl-l—f‘v

3 3 .
szl((:—f—n—i—l—}—Z—i—;—av, —n;l—}—z—sv;smz(ﬁy))

for k = -1 —

7433
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(58)

(59)

(60)

(61)

(62)

(63)

(64)
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4. Degeneracies

Let us take back thé = 2 oscillator-like interaction. If we put

N=2n+1 (65)
the deformed supersymmetric energies are (cf (50))

Ey =3AN(N + 1) +o(N +m) (66)

Ef = N+DN+2+w(N+m+2) (67)
according to the eigenvalues= +1 of o3. It is thus clear that the degeneracies

Ey, = E&*l)(m—l) (68)

are present in that context. Such degeneracies have to be explained [11] through operators
connecting the associated eigenfunctions, i.e. (see (34), (35), (37), (38) and (51))

Uy ~ (L4 Ar?) @223/

o N+I+1 —N+1 Ar? ;
(S : e 69
2 l(k+ 2 > 't 1+,\r2> (69)
and
1//(—&1-\/ " ~ Vl(l-}- )\’r2)7(0)/2)\.)7(1/2)7(3/4)
—4)m-1)
o N+I+1 —N+I Ar? ;
Fi(— : 1 e, 70
2 1(A+ 2 2 1+xr2> (70)
These operators do exist and can be written in the form
Ai =7T1:|:i]'[2:*:ia))€1—60)€2 (71)
as can be verified using a few properties of the hypergeometric functions [8].
Now, the supercharges (26) lead in this oscillator-like case to
1 . . .
0F = (Q1%£i02) = (11 F imz Fiwx; — wxp)os (72)
V2
or, in other words, to
0" = ATo.. (73)

Consequently, the structure explaining the degeneracies (68) is nothing but the generalized
SSQM-superalgebra pointed out in section 2.

Let us now turn to thed = 3 examples. We consider simultaneously the oscillator-like
interaction ¢ = 0) and the Calogero interactiom & 0). If we take account of (65), we
can write the energies (60) as

Ey, = 3AN(N+2) +w(N —1) — Av(N —1) (74)

Efy = 3MN+DWIN+3)+oN+1+3+2v)+ (N —1+1) (75)
and the energies (63) as

Ey,=3AN(N+2 4+ o(N+1+1+20) + (N —1+1) (76)

Efy = IMN+DWN +3)+oN —1+2) — (N —1+2). (77)
It is once again straightforward to notice that

Eyk=-1-1= E(J5V—1)(l—l)(k =1 (78)
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and
Eytk=1= E(+N_1>(z+1)(k =—[-1). (79)

These degeneracies are accidental ones by opposition to that revealed in (68). They
are indeed connected witllifferent values ofk. The degeneracy (78) has already been
observed in the undeformed case=t 0) by Balantekin [12] in the oscillator context and
by Celka and Hussin [10] in the Calogero context. The key point is now to explain these
degeneracies throughd hocoperators connecting

I/I;Im (k — —l _ 1) ~ rlJrV(l + )\’VZ)7((4)/2}07(1/2)7(1)/2)71

® N+I —N+1 3 r2
xoF1 x"‘T‘FV‘Fl,T;l‘FV‘FQQW Y1,(6, @)
(80)
and
I ) B ¢ B Vo e
w N+I —N+1 1 a2
x2F1 ()» + T +v+1, T;l_i— v+ é; 1+)»V2> Y(lfl)m’(es ®)
(81)
for the degeneracy (78) and
1//1;] (k — l) ~ rl*l)(l_i_ )\’FZ)7((4)/2)07(1/2)4’(1)/2)71
o N+I —N+1 3 ar?
F o~ 7_1_ 7'1_ 7;7 Yiﬂev
X2 1(A+ 5 v, V+21+M2>1( ®)
(82)

and

Ui paanm k= =1 = 1) ~ P g 32y @/20- 020722

N +1 —N+1 5 ar?
><2F1<‘:++ BT Ay d

2 T —V+2;1+M> Y(l+1)m’(91</))

(83)

for the degeneracy (79). Because we are in the central context, the spherical harmonics
Y;,(0, ¢) do not play any significant role and it is thus sufficient to try to relate the radial
parts of the functions (80)—(83). Using the properties of the hypergeometric function [8], it
is possible to verify that the operators

d [+1 '
0 = <—(1 + Arz)a + y + wr) o 0" =(0)' (84)
do connect the functions (80) and (81), while the operators
d —1 i
p- = (—(1+/\r2)d i wr) o Pt =(P7) (85)
/s r

relate the functions (82) and (83). It has to be noticed that these operators do not generate
a closed Lie structure.
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Appendix

We recall here, in order to be self-consistent, how to determine the eigenvalues and
eigenfunctions of thel) = 1)-dimensional Hamiltonian

Ho = %PZ + Vo(x) (86)
by using the factorization method [13]. The first step is to rewrite the equation
Hoy = EYr (87)
in the form
1d 1, 1dwy
(_Zd)cz+2W°(x)_2dx+Eo>l//_o (88)

where Ej is the lowest energy corresponding Y. In other words, we have to solve the
Riccatti equation

1 1dwy
Vo(x) = éWoz(x) ~5g, T Fo (89)
and then obtainWp, Ep and, consequently, the fundamental eigenfunction (up to a

normalization factor)

Yo ~ exp( — / Wo d.x). (90)
The other steps are then based on the recurrence relation [13]
aw,,_ dw,
W2+ LY 2E, = W2 — . +2E, n=12... (91)

leading to the knowledge o, and E,. The corresponding eigenfunctions are obtained
through

Y ~ <d(1 - Wo> (dcjc - W1> (di — Wn1> exp( - / W, dx). (92)

We can thus get the whole set of energy eigenvalues and eigenfunctions of (86).
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