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Abstract. Supersymmetric quantum mechanics is considered in one-, two- and three-
dimensional spaces characterized by a non-vanishing constant curvature. In particular, a basic
superalgebra is pointed out. Interactions such as those of oscillator-like or Calogero type are
analysed in this context with respect to their spectra and associated accidental degeneracies.

1. Introduction

Originally coming from particle physics developments, supersymmetric quantum mechanics
(SSQM) has received much attention in the recent literature [1] since Witten’s contribution
[2]. As is well known, it is characterized by the existence ofN self-adjoint operators
Qa (a = 1, 2, . . . , N)—the supercharges—each of them being the square root of the
HamiltonianH . More precisely, the Lie superalgebra subtending SSQM is that associated
with the following anticommutation and commutation relations:

{Qa,Qb} = 2δabH (1)

[H,Qa] = 0 a = 1, 2, . . . , N. (2)

Let us already notice that we will limit ourselves to the caseN = 2 corresponding, in
particular, to the interactions we will be interested in.

Some known systems are self-supersymmetric while the others need a supersymmetriza-
tion procedure. Among the first ones, we find the free context. Indeed, the (D-dimensional)
free Schr̈odinger Hamiltonian is

H = 1
2p

2 (3)

and is generated by the two supercharges

Q1 = 1√
2
(p ·ϕ(1)) Q2 = 1√

2
(p ·ϕ(2)) (4)

where the matricesϕ(1)j andϕ(2)j (j = 1, 2, . . . , D) satisfy

{ϕ(1)j , ϕ
(1)
k } = {ϕ(2)j , ϕ

(2)
k } = 2δjk (5)

{ϕ(1)j , ϕ
(2)
k } = 24jk (6)

4 being an antisymmetric tensor. In fact, it has been shown previously [3] that the quantities
ϕ
(1)
j andϕ(2)j are the generators of the superalgebrasu(2(D−1)/2/2(D−1)/2) if D is odd and
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su(2(D/2)−1/2(D/2)−1) if D is even. Among the second category, i.e. the systems needing
a supersymmatrization, we can recognize f.i. the harmonic oscillator-like interaction [4].
More generally, that is to say for an arbitrary interaction, the supercharges can be written
as

Q1 = 1√
2
(p ·ϕ(1) +W ·ϕ(2)) Q2 = 1√

2
(p ·ϕ(2) −W ·ϕ(1)) (7)

whereW (x) is called the superpotential. Through (1), they lead to the Hamiltonian

H = 1
2p

2+ 1
2W

2+Wkpj4jk − 1
2i∂jWk(4jk + 1

2[ϕ(1)j , ϕ
(2)
k ]). (8)

All these considerations are relevant of aflat space. Now, it is well known that a way
to put in evidencenonlinear algebras [5] is to leave such a flat space and go to acurved
one (characterized byλ > 0 if it is a sphere, byλ < 0 if it is a hyperbolöıd). If it is true at
the level of algebras, we can reasonably hope that it is also true at the level of superalgebras
such as that recalled in (1) and (2). It is the purpose of this paper to analyse this situation.
More precisely, we will show that the free case as well as the corresponding interacting
contexts are supersymmetric in a curved space and imply a generalized SSQM-superalgebra.

The contents are then as follows. In section 2, we introduce the generalized SSQM-
superalgebra on the free case example and extend it to the context of an arbitrary interaction.
The spectra and eigenfunctions of the new associated Hamiltonians are found in section 3 for
the oscillator-like interaction in one, two and three space dimensions and for the Calogero
interaction in three space dimensions. The degeneracies present in these spectra are studied
and explained in section 4. We also include an appendix recalling the main steps of the
supersymmetric factorization method.

2. The generalized SSQM-superalgebra

The free Hamiltonian on aD-dimensional curved space is [6]

H = 1
2(π

2+ λL2) (9)

whereπ refers to a new Hermitian momentum defined by

π = p+ 1
2λx(x · p)+ 1

2λ(p · x)x (10)

andL is the usual angular momentum

Ljk = xjpk − xkpj j, k = 1, 2, . . . , D.

Moreover, in order to fix our ideas, we consider the strictly positive curvatureλ (i.e. we
are working on the D-sphere).

The Hamiltonian (9) can be considered as a generalization of the Hamiltonian (3) (which
is recovered whenλ → 0). By analogy with the operators (4), we propose to define the
generalized supercharges by

Q1 = 1√
2
(π ·ϕ(1)) Q2 = 1√

2
(π ·ϕ(2)). (11)

Noticing that

[πj , πk] = iλLjk (12)

it is easy to see that

Q2
1 = 1

2π
2+ 1

8iλLjk[ϕ
(1)
j , ϕ

(1)
k ] (13)

Q2
2 = 1

2π
2+ 1

8iλLjk[ϕ
(2)
j , ϕ

(2)
k ] (14)

{Q1,Q2} = 1
4iλLjk[ϕ

(1)
j , ϕ

(2)
k ]. (15)
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Concentrating on the dimensionsD = 1, 2 and 3, we can, more precisely, realize the
quantitiesϕ(1)j andϕ(2)j in terms of the Pauli matrices as follows [4]:

ϕ
(1)
1 = σ1 ϕ

(2)
1 = σ2 if D = 1 (16)

ϕ
(1)
1 = σ1 ϕ

(1)
2 = σ2 ϕ

(2)
1 = σ2 ϕ

(2)
2 = −σ1 if D = 2 (17)

ϕ
(1)
1 = σ1⊗ σ1 ϕ

(1)
2 = σ2⊗ σ1 ϕ

(1)
3 = σ3⊗ σ1

ϕ
(2)
1 = σ1⊗ σ2 ϕ

(2)
2 = σ2⊗ σ2 ϕ

(2)
3 = σ3⊗ σ2

}
if D = 3 (18)

in agreement with (5) and (6). We can then rewrite relations (13)–(15) as

{Q1,Q1} = {Q2,Q2} = 2H − λJ2+ 1
8λD(D − 1) (19)

{Q1,Q2} = 0 (20)

where (forD = 2, 3)

J = L+ 1
2σ. (21)

Such results imply that

[H,Q1] = [H,Q2] = 0 (22)

[H,J ] = 0 (23)

[J ,Q1] = [J ,Q2] = 0 (24)

and evidently

[Jj , Jk] = iεjklJl. (25)

The set (19), (20), (22)–(25) imply that we have twoodd operators (Q1 and Q2) and
1
2(D

2 − D + 2) evenones (H andJ ). These are characteristics of a generalized SSQM-
superalgebra. They reduce to equations (1) and (2) ifλ → 0 (J disappears as it should
in the limit of a vanishingλ). Let us also notice that, in the caseD = 1, the usual
SSQM-superalgebra is recovered whetherλ is present or not.

If we now turn to the interacting context associated with

Q1 = 1√
2
(π ·ϕ(1) +W ·ϕ(2)) Q2 = 1√

2
(π ·ϕ(2) −W ·ϕ(1)) (26)

by analogy with (7), we are led through the relation (19) to

H = 1
2π

2+ 1
2W

2+ i
8λLjk[ϕ

(1)
j , ϕ

(1)
k ] + 1

2{πj ,Wk}4jk − 1
4[πj ,Wk][ϕ

(2)
k , ϕ

(1)
j ]

+ 1
2λJ

2− 1
16λD(D − 1) (27)

and the remaining relations of the generalized SSQM-superalgebra are still available.

3. Spectrum and eigenfunctions of the generalized Hamiltonian

Let us concentrate on systems submitted to central forces, i.e. described by superpotentials
of the form

W (x) = V (r)x r = |x|. (28)

The generalized Hamiltonian (27) can then be written as

H(D) = 1

2
p2− iλDx · p− i

2
λ2(D + 2)r2x · p+ λ(x · p)2+ 1

2
λ2r2(x · p)2

−λ
2

8
(D + 1)(D + 3)r2+ 1

2
V 2r2+ iλ

8
Ljk[ϕ

(1)
j , ϕ

(1)
k ] + V xkpj4jk
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+ i

4

(
δjkV + λxjxkV + 1

r
xjxkV

′ + λrxjxkV ′
)

[ϕ(2)k , ϕ
(1)
j ]

+λ
2
J2− λD

16
(3+ 5D) (29)

whereV ′ stands for the derivative ofV (r) with respect tor. Using the spherical coordinates
for which

1 = ∂2

∂r2
+ D − 1

r

∂

∂r
+ 1

r2
1θ (30)

and

x · p = −ir
∂

∂r
(31)

we respectively obtain forD = 1, D = 2 andD = 3

H(1) = −1

2
(1+ λr2)2

d2

dr2
− 2λr(1+ λr2)

d

dr
− λ2r2+ 1

2
V 2r2− λ

2

+1

2
σ3(1+ λr2)(V + rV ′) (32a)

H(2) = −1

2
(1+ λr2)2

∂2

∂r2
− 1

2r
(1+ λr2)(1+ 5λr2)

∂

∂r
− 1

2r2
(1+ λr2)1θ

−15λ

8

(
4

5
+ λr2

)
+ 1

2
V 2r2+ VL3+ V

(
1+ 1

2
λr2

)
σ3+ 1

2
r(1+ λr2)V ′σ3

(32b)

and

H(3) = −1

2
(1+ λr2)2

∂2

∂r2
− 1

r
(1+ λr2)(1+ 3λr2)

∂

∂r
− 1

2r2
(1+ λr2)1θ − 3λ(1+ λr2)

+1

2
V 2r2+ VL · σ ⊗ σ3+ 1

2
V (3+ λr2)I ⊗ σ3+ 1

2
r(1+ λr2)V ′I ⊗ σ3.

(32c)

In order to put in evidence the corresponding eigenvaluesE and eigenfunctionsψ satisfying

H(D)ψ = Eψ (33)

we successively realize the factorizations

ψ = R(r)Y (θ, . . .) (34)

and

R(r) = 3(r)r
−(1/2)(D−1)

1+ λr2
(35)

with [7]

3(θ)Y (θ, . . .) = −l(l +D − 2)Y (θ, . . .). (36)

Finally, we consider the following change of variables

r = 1√
λ

tan(
√
λy) (37)

and the associated factorization

3 = 1

cos(
√
λy)

χ(y). (38)
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We then obtain equation (33) on the more usual forms[
−1

2

d2

dy2
+ 1

2λ
V 2 tan2(

√
λy)+ σ3

2 cos2(
√
λy)

(
V + 1

2
√
λ

sin(2
√
λy)

dV

dy

)
− E

]
χ = 0

(39a)[
−1

2

d2

dy2
+ λ(l2− 1

4)

2 tan2(
√
λy)
+ 1

2
V

(
V

λ
+ σ3

)
tan2(
√
λy)− λ

4
+ λl

2

2
+ V σ3+ Vm

+ 1

2
V ′σ3(1+ tan2(

√
λy))

1√
λ

tan(
√
λy)− E

]
χ = 0 (39b)

and[
−1

2

d2

dy2
+ λl(l + 1)

2 tan2(
√
λy)
+ 1

2
V

(
V

λ
+ l ⊗ σ3

)
tan2(
√
λy)− λ

2
+ λ

2
l(l + 1)+ 3

2
V l ⊗ σ3

+ V kl ⊗ σ3+ 1

2
V ′l ⊗ σ3(1+ tan2(

√
λy))

1√
λ

tan(
√
λy)− E

]
χ = 0 (39c)

for D = 1, D = 2 andD = 3, respectively. Note thatm is the eigenvalue ofL3 andk is
the eigenvalue ofL · σ(k = l if j = l + 1

2, k = −l − 1 if j = l − 1
2).

Let us now turn to some specific interactions and let us apply in each case the
factorization based on SSQM characteristics as recalled in the appendix in order to put
in evidence the eigenvalues and eigenfunctions ofH(D).

3.1. TheD = 1 oscillator-like interaction

In this case, the functionV (r) introduced in (28) is simply the angular frequencyω.
Equation (39a) is then[

−1

2

d2

dy2
+ ω

2

2λ
tan2(
√
λy)+ σ3ω

2 cos2(
√
λy)
− E

]
χ = 0. (40)

It is thus a usual supersymmetric equation, i.e. of Witten type [2] (cf equation (8))
characterized by the superpotential

W(y) = ω√
λ

tan(
√
λy). (41)

Evidently, in the limitλ→ 0, we recoverW(y) = ωy as expected. Applying the method
developed in the appendix, we successfully obtain for the (-1)-eigenvalue ofσ3

Wn(y) =
(
n
√
λ+ ω√

λ

)
tan(
√
λy) (42)

E−n = n
(

1+ λ
2
n

)
ω (43)

and

χ−n ∼ (cos(
√
λy))ω/λ2F1

(
ω

λ
+ n

2
,−n

2
; 1

2
; sin2(

√
λy)

)
(44)

in terms of the hypergeometric function2F1(a, b; c; z) satisfying [8](
z(1− z) d2

dz2
+ (c − (a + b + 1)z)

d

dz
− ab

)
2F1(a, b; c; z) = 0. (45)
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The supersymmetric properties and, in particular, the double degeneracy [2] of the non-
vanishing energies imply that, for the (+1)-eigenvalue ofσ3, we have

E+n = (n+ 1)

(
1+ λ

2
(n+ 1)

)
ω (46)

and

χ+n ∼ (cos(
√
λy))(ω/λ)+1 sin(

√
λy)2F1

(
ω

λ
+ n+ 3

2
,
−n+ 1

2
; 3

2
; sin2(

√
λy)

)
. (47)

Let us notice that in the hyperboloı̈d context (λ < 0) where, essentially, trigonometric
functions have to be replaced by hyperbolic ones, the superpotential corresponding to (41)
is the P̈oschl–Teller one [9].

3.2. TheD = 2 oscillator-like interaction

ReplacingV by ω in (39b), we obtain[
− 1

2

d2

dy2
+ λ

(
l2− 1

4

)
2tg2(
√
λy)
+ ω

2

(
ω

λ
+ σ3

)
tan2(
√
λy)− λ

4
+ λl

2

2
+ ωσ3+ ωm− E

]
χ = 0.

(48)

Applying once again the suypersymmetric factorization as mentioned in the appendix, we
find

Wn(y) =
(√

λ

(
n+ 1

2
(ε + 1)

)
+ ω√

λ

)
tan(
√
λy)−

√
λ

(
n+ l + 1

2

)
cot(
√
λy) (49)

En = λ

2

(
2n+ l + 1

2
(ε + 1)

)(
2n+ l + 3

2
+ ε

2

)
+ ω(2n+ l +m+ ε + 1) (50)

χn ∼ (cos(
√
λy))(ω/λ)+((ε+1)/2)(sin(

√
λy))l+(1/2)

×2F1

(
ω

λ
+ n+ l + 1+ ε

2
,−n; l + 1; sin2(

√
λy)

)
(51)

in terms ofε = ±1, the eigenvalues ofσ3.

3.3. TheD = 3 oscillator-like interaction

What we have to do, also in this case, is to replaceV by ω in (39c) so we have[
−1

2

d2

dy2
+ λl(l + 1)

2 tan2(
√
λy)
+ ω

2

(ω
λ
+ l ⊗ σ3

)
tan2(
√
λy)− λ

2
+ λ

2
l(l + 1)

+ 3

2
ωl ⊗ σ3+ ωkl ⊗ σ3− E

]
χ = 0. (52)

The associated superpotentials, energies and eigenfunctions are respectively

Wn(y) =
(√

λ

2
(ε + 1+ 2n)+ ω√

λ

)
tan(
√
λy)−

√
λ(n+ l + 1) cot(

√
λy) (53)

En = λ

2

(
2n+ l + 1

2
(ε + 1)

)(
2n+ l + 5

2
+ ε

2

)
+ ω

(
2n+ l + εk + 3

2
(ε + 1)

)
(54)
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and

χn ∼ (cos(
√
λy))(ω/λ)+((ε+1)/2)(sin(

√
λy))l+1

×2F1

(
ω

λ
+ n+ l + 3

2
+ ε

2
,−n; l + 3

2
; sin2(

√
λy)

)
. (55)

3.4. TheD = 3 Calogero interaction

This interaction corresponds to the superpotential (28) where [10]

V (r) = ω + ν

r2
l + 1

2
> ν > −l − 1

2
. (56)

With the change of variables (37), it is rewritten as

V (y) = ω + λν

tan2(
√
λy)

(57)

implying that equation (39c) reduces to[
−1

2

d2

dy2
+ 1

tan2(
√
λy)

(
λ

2
l(l + 1)+ 1

2
λν2+ 1

2
λνl ⊗ σ3+ λνkl ⊗ σ3

)
+ tan2(

√
λy)

(
ω2

2λ
+ ω

2
l ⊗ σ3

)
+ ων − λ

2
+ λ

2
l(l + 1)

+
(
ωk + 3

2
ω − 1

2
νλ

)
l ⊗ σ3− E

]
χ = 0. (58)

The supersymmetric factorization leads to

Wn(y) =
(√

λ

2
(ε + 1+ 2n)+ ω√

λ

)
tan(
√
λy)−

√
λ(n+ l + 1+ νε) cot(

√
λy) (59)

En = λ

2

(
2n+ l + 1

2
(ε + 1)

)(
2n+ l + 5

2
+ ε

2

)
+ω

(
2n+ l + εk + 3

2
(ε + 1)

)
+ ων(ε + 1)+ λν

(
2εn+ 1

2
(ε + 1)

)
(60)

χn ∼ (cos(
√
λy))(ω/λ)+((ε+1)/2)(sin(

√
λy))l+1+εν

×2F1

(
ω

λ
+ n+ l + 3

2
+ ε

2
+ εν,−n; l + 3

2
+ εν; sin2(

√
λy)

)
(61)

for k = l, and

Wn(y) =
(√

λ

2
(ε + 1+ 2n)+ ω√

λ

)
tan(
√
λy)−

√
λ(n+ l + 1+ νε) cot(

√
λy) (62)

En = λ

2

(
2n+ l + 1

2
(ε + 1)

)(
2n+ l + 5

2
+ ε

2

)
+ ω

(
2n+ l + εk + 3

2
(ε + 1)

)
+ων(1− ε)− λν

(
2εn+ 3ε

2
+ 1

2

)
(63)

χn ∼ (cos(
√
λy))(ω/λ)+((ε+1)/2)(sin(

√
λy))l+1−εν

×2F1

(
ω

λ
+ n+ l + 3

2
+ ε

2
− εν,−n; l + 3

2
− εν; sin2(

√
λy)

)
(64)

for k = −l − 1.
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4. Degeneracies

Let us take back theD = 2 oscillator-like interaction. If we put

N = 2n+ l (65)

the deformed supersymmetric energies are (cf (50))

E−Nm = 1
2λN(N + 1)+ ω(N +m) (66)

E+Nm = 1
2λ(N + 1)(N + 2)+ ω(N +m+ 2) (67)

according to the eigenvaluesε = ±1 of σ3. It is thus clear that the degeneracies

E−Nm = E+(N−1)(m−1)
(68)

are present in that context. Such degeneracies have to be explained [11] through operators
connecting the associated eigenfunctions, i.e. (see (34), (35), (37), (38) and (51))

ψ−Nm ∼ rl(1+ λr2)−(ω/2λ)−(l/2)−(3/4)

×2F1

(
ω

λ
+ N + l + 1

2
,
−N + l

2
; l + 1; λr2

1+ λr2

)
eimθ (69)

and

ψ+(N−1)(m−1)
∼ rl(1+ λr2)−(ω/2λ)−(l/2)−(3/4)

×2F1

(
ω

λ
+ N + l + 1

2
,
−N + l

2
; l; λr2

1+ λr2

)
ei(m−1)θ . (70)

These operators do exist and can be written in the form

A± = π1± iπ2± iωx1− ωx2 (71)

as can be verified using a few properties of the hypergeometric functions [8].
Now, the supercharges (26) lead in this oscillator-like case to

Q± = 1√
2
(Q1± iQ2) = (π1∓ iπ2∓ iωx1− ωx2)σ± (72)

or, in other words, to

Q± = A∓σ±. (73)

Consequently, the structure explaining the degeneracies (68) is nothing but the generalized
SSQM-superalgebra pointed out in section 2.

Let us now turn to theD = 3 examples. We consider simultaneously the oscillator-like
interaction (ν = 0) and the Calogero interaction (ν 6= 0). If we take account of (65), we
can write the energies (60) as

E−Nl = 1
2λN(N + 2)+ ω(N − l)− λν(N − l) (74)

E+Nl = 1
2λ(N + 1)(N + 3)+ ω(N + l + 3+ 2ν)+ λν(N − l + 1) (75)

and the energies (63) as

E−Nl = 1
2λN(N + 2)+ ω(N + l + 1+ 2ν)+ λν(N − l + 1) (76)

E+Nl = 1
2λ(N + 1)(N + 3)+ ω(N − l + 2)− λν(N − l + 2). (77)

It is once again straightforward to notice that

E−Nl(k = −l − 1) = E+(N−1)(l−1)(k = 1) (78)
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and

E−Nl(k = l) = E+(N−1)(l+1)(k = −l − 1). (79)

These degeneracies are accidental ones by opposition to that revealed in (68). They
are indeed connected withdifferent values ofk. The degeneracy (78) has already been
observed in the undeformed case (λ = 0) by Balantekin [12] in the oscillator context and
by Celka and Hussin [10] in the Calogero context. The key point is now to explain these
degeneracies throughad hocoperators connecting

ψ−Nlm(k = −l − 1) ∼ rl+ν(1+ λr2)−(ω/2λ)−(l/2)−(ν/2)−1

×2F1

(
ω

λ
+ N + l

2
+ ν + 1,

−N + 1

2
; l + ν + 3

2
; λr2

1+ λr2

)
Ylm(θ, ϕ)

(80)

and

ψ+(N−1)(l−1)m′(k = l) ∼ rl+ν−1(1+ λr2)−(ω/2λ)−(l/2)−(ν/2)−1

×2F1

(
ω

λ
+ N + l

2
+ ν + 1,

−N + l
2
; l + ν + 1

2
; λr2

1+ λr2

)
Y(l−1)m′(θ, ϕ)

(81)

for the degeneracy (78) and

ψ−Nlm(k = l) ∼ rl−ν(1+ λr2)−(ω/2λ)−(l/2)+(ν/2)−1

×2F1

(
ω

λ
+ N + l

2
− 1− ν, −N + l

2
; l − ν + 3

2
; λr2

1+ λr2

)
Ylm(θ, ϕ)

(82)

and

ψ+(N−1)(l+1)m′(k = −l − 1) ∼ rl−ν+1(1+ λr2)−(ω/2λ)−(l/2)−(ν/2)−2

×2F1

(
ω

λ
+ N + l

2
− ν + 2,

−N + l
2
; l − ν + 5

2
; λr2

1+ λr2

)
Y(l+1)m′(θ, ϕ)

(83)

for the degeneracy (79). Because we are in the central context, the spherical harmonics
Yln(θ, ϕ) do not play any significant role and it is thus sufficient to try to relate the radial
parts of the functions (80)–(83). Using the properties of the hypergeometric function [8], it
is possible to verify that the operators

Q− =
(
−(1+ λr2)

d

dr
+ l + 1+ ν

r
+ ωr

)
σ− Q+ = (Q−)† (84)

do connect the functions (80) and (81), while the operators

P− =
(
−(1+ λr2)

d

dr
+ ν − l

r
+ ωr

)
σ− P+ = (P−)† (85)

relate the functions (82) and (83). It has to be noticed that these operators do not generate
a closed Lie structure.
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Appendix

We recall here, in order to be self-consistent, how to determine the eigenvalues and
eigenfunctions of the (D = 1)-dimensional Hamiltonian

H0 = 1
2p

2+ V0(x) (86)

by using the factorization method [13]. The first step is to rewrite the equation

H0ψ = Eψ (87)

in the form (
−1

2

d2

dx2
+ 1

2
W 2

0 (x)−
1

2

dW0

dx
+ E0

)
ψ = 0 (88)

whereE0 is the lowest energy corresponding toV0. In other words, we have to solve the
Riccatti equation

V0(x) = 1

2
W 2

0 (x)−
1

2

dW0

dx
+ E0 (89)

and then obtainW0, E0 and, consequently, the fundamental eigenfunction (up to a
normalization factor)

ψ0 ∼ exp

(
−
∫
W0 dx

)
. (90)

The other steps are then based on the recurrence relation [13]

W 2
n−1+

dWn−1

dx
+ 2En−1 = W 2

n −
dWn

dx
+ 2En n = 1, 2, . . . (91)

leading to the knowledge ofWn andEn. The corresponding eigenfunctions are obtained
through

ψn ∼
(

d

dx
−W0

)(
d

dx
−W1

)
· · ·
(

d

dx
−Wn−1

)
exp

(
−
∫
Wn dx

)
. (92)

We can thus get the whole set of energy eigenvalues and eigenfunctions of (86).
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